SASNets: Classifying Small Angle Scattering Data Using Convolutional Neural Networks

Chris Wang^{1, 2} Advisors: William Ratcliff² and Paul Kienzle²

¹Montgomery Blair High School, ²NIST Centre for Neutron Research

August 2, 2017

Outline

Introduction

Introduction to SANS Introduction to CNNs

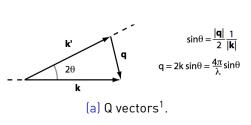
Experimental Setup

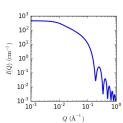
Network Design Classification Task

Results

Results

Conclusion


Conclusion

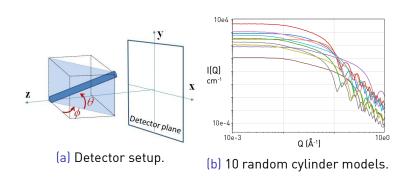

End Matter

End Matter

Introduction to SANS

- Probes matter structure with neutrons
- Uses neutron's special properties
- ▶ Model → Scattered pattern not invertible

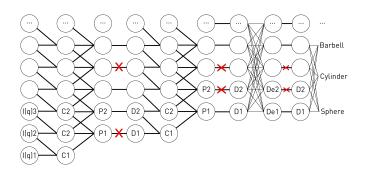
(b) Example SANS result².


 $^{^2\}mbox{A.\,J.}$ Jackson, Introduction to small-angle neutron scattering and neutron reflectometry. 2008.

²SASView Documentation.

00

SANS Data


▶ 1D pattern is integral over all θ and ϕ

•0

Introduction to Convolutional Neural Networks

- Network of nodes (axons) and connections (synapses).
- ightharpoonup Convolutional operation on input \rightarrow spatial invariance.

00

CNN Example

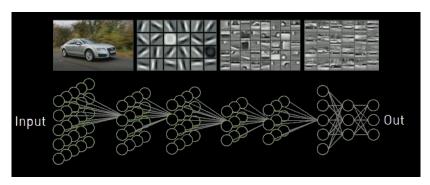
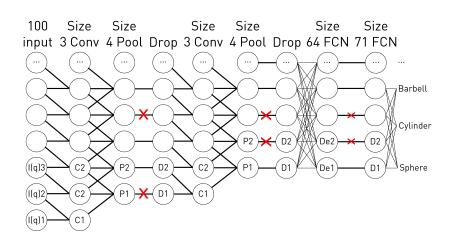
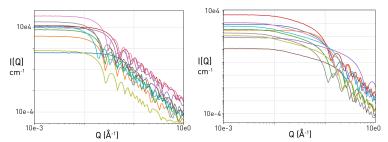




Figure 3: A CNN with features shown.

CNN Design

Classification Task

(a) 10 random sphere models. (b) 10 random cylinder models.

Implementation

- Implemented random data generation, model training, & model analysis
- Python 2.7, Tensorflow, Keras

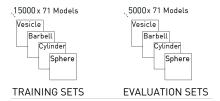
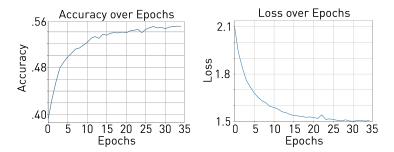
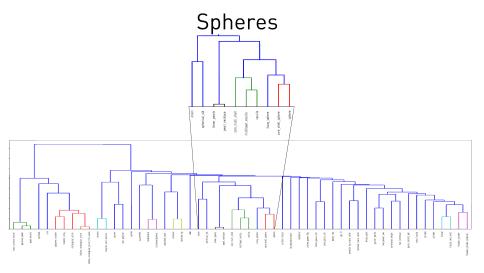
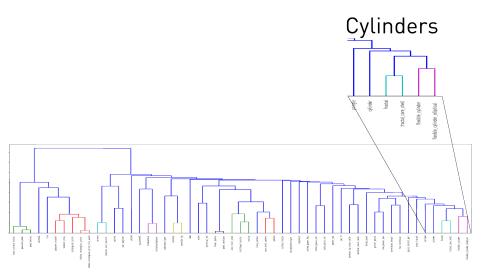


Figure 5: Data used in network.

Classification Results

- 54.9% validation accuracy on the 71 model set
- Ran for 34 epochs, 2 hours and 30 minutes
- Adam optimizer³ using multinominal logistic regression⁴


Figure 6: Accuracy and Validation graphs

³Kingma and J.Ba, "Adam: A method for stochastic optimization," arXiv preprint.

⁴S. Menard, Applied logistic regression analysis, vol. 106. Sage, 2002.

Classification Results

Conclusion & Next Steps

Conclusion

- Demonstrate CNN can make significant progress on model classification problem
- Implemented network capable of 54.9% accuracy on 71 model set
- Found that network finds groups of models from raw data
- Current data unrealistic, expand model to real data ranges

Acknowledgements

- NIST Centre for Neutron Research
- Centre for High Resolution Neutron Scattering
- ► The SANS Subproject of NSF-funded DANSF DMR-0520547
- The many colleagues at NCNR

- William Ratcliff and Paul Kienzle
- NCNR SHIP Directors
- NIST
- NSF

End Matter

Questions

Any Questions? Thanks for listening!

More information can be found at sasnets.readthedocs.io.