	Experimental Setup		End Matter
00 00			

SASNets: Classifying Small Angle Scattering Data Using Convolutional Neural Networks

Chris Wang^{1, 2} Advisors: William Ratcliff² and Paul Kienzle²

¹Montgomery Blair High School, ²NIST Centre for Neutron Research

January 9, 2018

	Experimental Setup		End Matter
00 00			

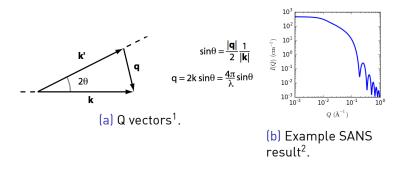
Outline

Introduction Introduction to SANS Introduction to CNNs

Experimental Setup Network Design Classification Task

Results

Results

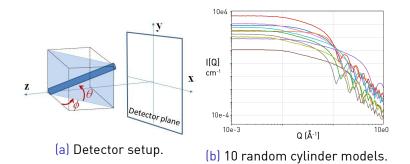

Conclusion Conclusion

End Matter End Matter

Introduction ●O ○○	Experimental Setup o oo		End Matter oo
Introduction to SANS			

Introduction to SANS

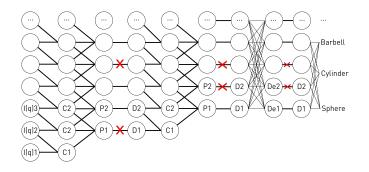
- Probes matter structure with neutrons
- Uses neutron's special properties
- ▶ Model → Scattered pattern not invertible


 $^2\mbox{A}$. J. Jackson, Introduction to small-angle neutron scattering and neutron reflectometry. 2008.

²SASView Documentation.

Introduction ○● ○○	Experimental Setup o oo		End Matter oo
Introduction to SANS			

SANS Data


• 1D pattern is integral over all θ and ϕ

Introduction	Experimental Setup		End Matter
00 •0			
Introduction to CNNs			

Introduction to Convolutional Neural Networks

- Network of nodes (axons) and connections (synapses).
- Convolutional operation on input \rightarrow spatial invariance.

Introduction	Experimental Setup		End Matter
00			
00	00		
Introduction to CNNs			

CNN Example

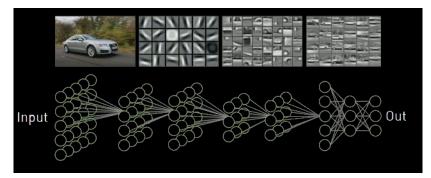
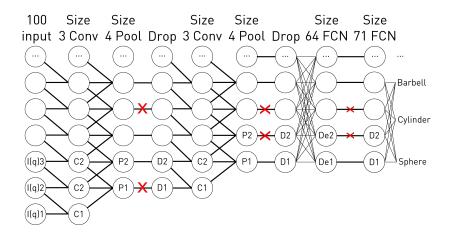
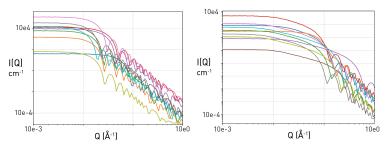



Figure 3: A CNN with features shown.


Introduction oo oo	Experimental Setup		End Matter 00
Network Design			

CNN Design

	Experimental Setup		End Matter
00	○ ● ○		
Classification Task			

Classification Task

(a) 10 random sphere models. (b) 10 random cylinder models.

	Experimental Setup		End Matter
00 00	o •		
Classification Task			

Implementation

- Implemented random data generation, model training, & model analysis
- Python 2.7, Tensorflow, Keras

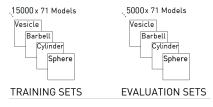
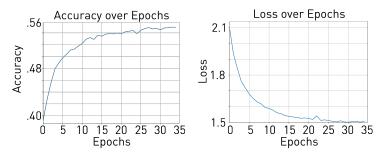


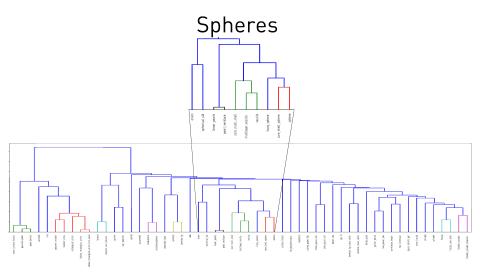
Figure 5: Data used in network.

Introduction oo oo	Experimental Setup o oo	Results ●00	End Matter 00
Results			

Classification Results

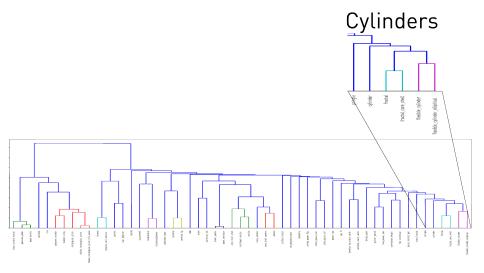
- ▶ 54.9% validation accuracy on the 71 model set
- Ran for 34 epochs, 2 hours and 30 minutes
- Adam optimizer³ using multinominal logistic regression⁴




Figure 6: Accuracy and Validation graphs

³Kingma and J.Ba, "Adam: A method for stochastic optimization," arXiv preprint.

⁴S. Menard, Applied logistic regression analysis, vol. 106. Sage, 2002.


Introduction 00 00	Experimental Setup o oo	Results 0●0	End Matter oo
Results			

Classification Results

Introduction oo oo	Experimental Setup o oo	Results 00●	End Matter oo
Results			

Classification Results

Introduction oo oo	Experimental Setup o oo	Conclusion •	End Matter 00
Conclusion			

Conclusion & Next Steps

- Demonstrate CNN can make significant progress on model classification problem
- Implemented network capable of 54.9% accuracy on 71 model set
- Found that network finds groups of models from raw data
- Current data unrealistic, expand model to real data ranges

Introduction 00 00	Experimental Setup 0 00		End Matter ●○
End Matter			

Acknowledgements

- NIST Center for Neutron Research
- Center for High Resolution Neutron Scattering
- The SANS Subproject of NSF-funded DANSE DMR-0520547
- The many colleagues at NCNR

- William Ratcliff and Paul Kienzle
- Ms. Bosse
- NCNR SHIP Directors

NSF

Introduction oo oo	Experimental Setup o oo		End Matter ⊙●
End Matter			

Any Questions? Thanks for listening! More information can be found at sasnets.readthedocs.io.