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Goal: Streamline the process of fitting small angle neutron scattering data to theory models.
Motivation: Fitting data can be difficult if the model is not known, especially for non-experts. 

This delays the process of analysis and increases labour.
Results: Implemented a convolutional neural network capable of 54.9% accuracy on a set of 71 

models. Network was also able to distinguish between classes, such as cylinder and sphere.
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Small Angle Neutron Scattering(SANS) is a common technique used in the 
analysis of diverse materials such as crystals to proteins. SANS is used to study 
the internal structure of materials because of the neutron’s unique scattering 
characteristics. Neutrons are scattered off of the nucleus, producing different 
intensity levels depending on the shape of the object. 
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Artificial neural networks are computer systems designed based on the human 
brain. They are composed of a network of nodes (axons) connected by edges 
(synapses). A neuron takes its inputs, multiplies them by a weight matrix, and 
adds a bias matrix. If the output quantity exceeds a threshold, the neuron 
outputs a value. Different neuron types, modelled after various biological 
functions, can be selected. In this research, we use a convolutional neural 
network(CNN), which are based on the animal visual cortex.

Experimental Setup

The model is trained using I(q) as the predictor and the model name as the 
expected output. The system specs were: i7-7700, Nvidia Founders Edition GTX 
1080 Ti, 512GB M.2 SSD, and 16GB DDR4 2400MHZ RAM.
N.B. More information about Tensorflow can be found at [1].

Conclusion
We demonstrate an implementation of a convolutional neural network which 
classifies SANS data into a set of 71 models with 54.9% accuracy. We also find 
that the network can group related models together based solely on the input.
Development on the project continues; currently we are working on generating 
more realistic data and refining the model to be more robust to incomplete or 
noisy data. In addition, we are working on integrating model prediction with 
SASView, which will automatically fit to the theory model.

Results
The model was run for 34 epochs, where each epoch trained the model 
repeatedly on random samples of training data of size five until all training data 
had been used. At the end of each epoch, the model was evaluated with the 
validation data. The model achieved 54.9% accuracy at the end of the training run 
with a loss of 1.505 on the evaluation data. Training took a total of 2 hours and 36 
minutes.
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N.B. For a more complete mathematical introduction to SANS, see [2]. For more about softmax, see [5]. 

As there were 71 distinct models, an accuracy of 54.9% represents a 40× 
increase over random guessing. This demonstrates that a CNN has the 
potential to learn the correct model classifications very well.

Sphere

Sticky-hard-sphere

Fuzzy-sphere

Vesicle

Multilayer-vesicle

Core-multi-shell

Pearl-necklace

linear-pearls

In addition, the network tended to 
misclassify models within related 
groups. For example, a sphere 
would sometimes be misclassified 
as a sticky-hard-sphere, but never 
as a lamellar.

Fig. 4. An excerpt from a dendrogram, which clusters related models together based on how often they were confused with 
each other. Here, the grouping of spheres is shown. A full dendrogram in SVG form can be found on the website.

Fig. 2. Simplified representation of our CNN structure.

Fig. 1. Graphs log(I(q)) vs log(q) of typical cylinder and sphere models respectively. For a nonexpert SANS 
user, these can be difficult to distinguish.
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Input layer of 100 I(q) points.

Convolutional layers with 
filters of size 2.

Pooling layer that outputs the 
max of its three inputs.

Dropout temporarily removes a 
node with probability p.

Second convolutional layer 
with filter size 2.

Pooling layer with size 3 pools.

Dropout with probability p.

Densely connected layer where 
each neuron has an input form 
all preceding neurons.

Dropout of probability p.

Densely connected output 
layer.

Further Info
For more information 
about this project, scan 
a QR code from the 
right.
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EVALUATION SETS

5000 ● Each model has 100 I(q) points
● Train for 34 epochs
● Adam[3] and softmax
● Separate evaluation set provides 

independent statistics
● Constructed using Keras, 

Tensorflow and Python. 
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