

SASNets: Classifying Small Angle Neutron
Scattering Data Using Convolutional Neural

Networks
Christopher Wang, Advisors: William Ratcliff & Paul Kienzle

NIST Centre For Neutron Research

Goal: Streamline the process of fitting small angle neutron scattering data to theory models.
Motivation: Fitting data can be difficult if the model is not known, especially for non-experts.

This delays the process of analysis and increases labour.
Results: Implemented a convolutional neural network capable of 54.9% accuracy on a set of 71

models. Network was also able to distinguish between classes, such as cylinder and sphere.

Introduction

Acknowledgements

Contact

Small Angle Neutron Scattering(SANS) is a common technique used in the
analysis of diverse materials such as crystals to proteins. SANS is used to study
the internal structure of materials because of the neutron’s unique scattering
characteristics. Neutrons are scattered off of the nucleus, producing different
intensity levels depending on the shape of the object.

Chris Wang: wangch00@icloud.com, Paul Kienzle: paul.kienzle@nist.gov, William Ratcliff: william.ratcliff@nist.gov

Website Github

This research was supported by funding and material support
from the NIST Centre for Neutron Research and its Centre for
High Resolution Neutron Scattering and by code developed by
the SANS subproject of NSF-funded DANSE DMR-0520547.
Finally, we thank the many colleagues who have provided
advice, data, and material, without whom this project would
not have been possible.

References
[1] Google. Tensorflow Documentation. (2017).
[2] Jackson, A.J. (2008). Introduction to Small-Angle Neutron Scattering and
Neutron Reflectometry.
[3] Kingma, D.P., Ba, J. (2014). Adam: A method for stochastic optimisation.
arXiv:1412.6980
[4] LeCun, Y., Bottou, L., Bengio Y., Haffner P. (1998). Gradient-based
learning applied to document recognition. In proceedings of the IEEE,
86(11):2278-2324, November.
[5] Menard, S. (2002). Applied logistic regression analysis (Vol. 106). Sage.

Artificial neural networks are computer systems designed based on the human
brain. They are composed of a network of nodes (axons) connected by edges
(synapses). A neuron takes its inputs, multiplies them by a weight matrix, and
adds a bias matrix. If the output quantity exceeds a threshold, the neuron
outputs a value. Different neuron types, modelled after various biological
functions, can be selected. In this research, we use a convolutional neural
network(CNN), which are based on the animal visual cortex.

Experimental Setup

The model is trained using I(q) as the predictor and the model name as the
expected output. The system specs were: i7-7700, Nvidia Founders Edition GTX
1080 Ti, 512GB M.2 SSD, and 16GB DDR4 2400MHZ RAM.
N.B. More information about Tensorflow can be found at [1].

Conclusion
We demonstrate an implementation of a convolutional neural network which
classifies SANS data into a set of 71 models with 54.9% accuracy. We also find
that the network can group related models together based solely on the input.
Development on the project continues; currently we are working on generating
more realistic data and refining the model to be more robust to incomplete or
noisy data. In addition, we are working on integrating model prediction with
SASView, which will automatically fit to the theory model.

Results
The model was run for 34 epochs, where each epoch trained the model
repeatedly on random samples of training data of size five until all training data
had been used. At the end of each epoch, the model was evaluated with the
validation data. The model achieved 54.9% accuracy at the end of the training run
with a loss of 1.505 on the evaluation data. Training took a total of 2 hours and 36
minutes.

.54

.48

.40

0 5 10 15 20 25 30 35

Validation Accuracy over Epochs Validation Loss over Epochs

0 5 10 15 20 25 30 35

2.1

1.9

1.7

1.5

N.B. For a more complete mathematical introduction to SANS, see [2]. For more about softmax, see [5].

As there were 71 distinct models, an accuracy of 54.9% represents a 40×
increase over random guessing. This demonstrates that a CNN has the
potential to learn the correct model classifications very well.

Sphere

Sticky-hard-sphere

Fuzzy-sphere

Vesicle

Multilayer-vesicle

Core-multi-shell

Pearl-necklace

linear-pearls

In addition, the network tended to
misclassify models within related
groups. For example, a sphere
would sometimes be misclassified
as a sticky-hard-sphere, but never
as a lamellar.

Fig. 4. An excerpt from a dendrogram, which clusters related models together based on how often they were confused with
each other. Here, the grouping of spheres is shown. A full dendrogram in SVG form can be found on the website.

Fig. 2. Simplified representation of our CNN structure.

Fig. 1. Graphs log(I(q)) vs log(q) of typical cylinder and sphere models respectively. For a nonexpert SANS
user, these can be difficult to distinguish.

I(q)1 I(q)2 I(q)3 ...

...C1 C2 C2

...P1 P2

...D1 D2

...C1 C2

...P1 P2

...D1 D2

...De1 De2

...D1 D2

Sphere Cylinder Barbell ...

Input layer of 100 I(q) points.

Convolutional layers with
filters of size 2.

Pooling layer that outputs the
max of its three inputs.

Dropout temporarily removes a
node with probability p.

Second convolutional layer
with filter size 2.

Pooling layer with size 3 pools.

Dropout with probability p.

Densely connected layer where
each neuron has an input form
all preceding neurons.

Dropout of probability p.

Densely connected output
layer.

Further Info
For more information
about this project, scan
a QR code from the
right.

I(Q)
cm-1

Q (Å-1)

Model
4 Model

3 Model
2 Model

1

…15000

71 Models

TRAINING SETS

Model
4 Model

3 Model
2 Model

1

…

71 Models

EVALUATION SETS

5000 ● Each model has 100 I(q) points
● Train for 34 epochs
● Adam[3] and softmax
● Separate evaluation set provides

independent statistics
● Constructed using Keras,

Tensorflow and Python.

Q (Å-1)

I(Q)
cm-1

Epochs Epochs

Lo
ss

A
cc

ur
ac

y

CC

